Pyrogen The Aerosol Fire Supression System

Now available exclusively from

Specialist Fire Protection

Suppliers of The Pyrogen Aerosol Supression System

A revolution is taking place in Fire Suppression. Developed from solid rocket fuel technology, Pyrogen is the world's first commercially available Aerosol Fire Extinguishing System. Designed as a safe & practical alternative to Halon, Halocarbons, Chemical Powders and Inert Gases Pyrogen is available from stock in a wide range of canister sizes. Pyrogen is an inert non-toxic solid that remains stable until electrically or thermally activated, where upon it produces a gas-like extinguishing aerosol. The aerosol attacks the fire chemically and physically, giving virtual instant extinguishment & preventing re-ignition, and in certain instances, explosions. For many applications Pyrogen is the only practical alternative to Halon.

Some of the sizes available

Simply installed close to the potential hazard

When electrically or thermally ignited, Pyrogen generates the fire extinguishing aerosol

Easily reinstalled within minutes

3 times more effective than Halon.

At a maximum* design concentration of 100g per m³ Pyrogen exhibits equal or better extinguishing properties than Halon 1301 at 330g per m volume), as certified by Scientific Services Laboratory. Pyrogen has the lowest extinguishing concentration amongst commercially available agents.

* Recommended maximum for Class A, B, C, E & F type fires. Refer to table on reverse.

Environmentally Friendly

Pyrogen has been certified as having Zero Ozone Depleting Potential (ODP) & Zero Global Warming Potential (GWP). It is officially listed by the US Environmental Protection Authority under its Halon replacement 'Significant New Alternatives Program' (SNAP).

No Pressurised Cylinders or Pipe work.

Pyrogen Canisters are self contained, zero pressure units. As well as being light & safe to transport, they require no additional pipes, nozzles or distribution equipment. They cannot leak, burst or deteriorate, and can be stored for up to 10 years without maintenance.

Tests & certification

Pyrogen has been tested by LPC, Scientific Service Laboratories (Australia) and is undergoing further certification worldwide. For the latest approval listings and test data please contact your nearest Pyrogen dealer.

lnert gas

Pyrogen canisters can provide the smallest & lightest fire extinguishing system currently available.

Compact & Weight Saving.

With space requirements of up to 1/40th of Inert gases, and weight penalties of often only 10% of competing systems, Pyrogen in many cases is the only practical Halon replacement.

Simple to Install & Recommission.

Pyrogen canisters are electrically (or automatically thermally) activated. Simple wiring & plug in connectors can reduce installation times to a 1/3rd or less. If discharged, new canisters may be reinstalled in minutes* affording minimal downtime and eliminate potentially hazardous periods of non-active fire suppression.

* Providing all and any necessary safety checks & inspections have been completed.

Low Toxicity.

Unlike some Halon alternatives, Pyrogen produces no aggressive acids such as Hydrogen Fluoride upon contact with hot surfaces. Pyrogen produces no chlorine or bromide and does not deplete oxygen to suppress the fire.

Cost Effective

With minimal space & weight requirements, simple installation, zero maintenance and up to 10 years service life, Pyrogen is arguably the most cost effective Halon alternative available.

The principle of extinguishing action employed by Pyrogen is unique - a special solid chemical, when electrically or thermally ignited, produces combustion products - micron size dry chemical particles and gases. Dry chemical particles, (mainly potassium carbonates), and gaseous mixture, (mainly carbon dioxide, nitrogen and water vapour), mix together into a uniform fire extinguishing aerosol. Before being released into a protected area, the hot aerosol propels itself through a unique solid chemical coolant, which decomposes absorbing huge amounts of heat, thus ensuring flameless discharge and uniform distribution of the cool aerosol within the area.

The high rate of aerosol discharge ensures a tremendous knockdown effect. Micron size aerosol particles exhibit gas-like threedimensional qualities that allow the agent to rapidly distribute throughout enclosure and reach even the most concealed and shielded locations. Homogeneous distribution is achieved in a matter of seconds, while long holding times all help to prevent fire re-ignition.

Canister Characteristics

Canister Material: Surface Treatment: Max/Min Ambient Shock: Vibration: Corrosion Resistance: Impact Resistance: Humidity: Marine Grade Aluminium Alloy Powder Coated (red) -50°C ~ +60°C Tested at 10g for >13,000 impacts 5g @ 50~250Hz Greater than UL 1058 IP558 ≤96%

Electrical (Thermal) Characteristics

Supervision/Monitoring Circuit: Activation (Electrical): Activation (Thermal): Connector:

≤1mA ≥400mA @6/12/24v for 10mS ≥175°C 4 pin Military Type 2 PMDT Analog MIL-C-5015

Aerosol Characteristics

(at maximum design concentration)Potassium Carbonates, solid: $\sim 7g/m_s^2$ Nitrogen Gas: $\sim 70\%$ lCarbon Dioxide Gas: $\sim 1.2\%$ Carbon Monoxide Gas: $\sim 0.4\%$ Nitrogen Oxides, Gas:40 - 10Ammonia, Gas: ~ 0.075 Temp at Nozzle + 500mm: $\leq 75^{\circ}C$ Oxygen (level)17% toHolding time ≤ 60 mi

~ 7g/m3 ~ 70% by vol. ~ 1.2% by vol ~ 0.4% by vol 40 - 100 ppm~ 0.075% by vol \leq 75°C 17% to 20% (typical) \leq 60 mins

Classifications Suitable for Fire:

Handling & Transport:

Packaging Group:

Class A - Combustible Solids Class B - Flammable Liquids Class C - Flammable Gases Class E - Electrically Energised Fires Class F - Fats & Cooking Oils Accordance with UN 1325 & Dangerous Goods Code: 4.1 Haz.Chem. Code : 2[Y] E III

Comparison table

Agent	Formula	%	TOXICITY	ODP	GWP (100yrs vs CO2 =1)	Atmospheric lifetimes (yrs)	Extinguishing concentration (Class B fires) %v.v. g/m 3		Mechanism of fire suppression	
PYROGEN	KNO 3 Plasticised Nitrocellulose Carbon Admixtures	62.3% 12.7% 9% 16%	LOW*	0	0	0		100	chemical	
Halon 1301	CBrF3		LOW	10	5600	65	5	330	Chemical	
FM-200	CF3CHFCF3		LOW	0	2900	36.5	7	530	physical	
NAF S III	CHCI 2CF 3 CHCIF 2 CHCIFCF 3	4.75% 82% 9.5%	LOW	0.036	1450	12	11.9	530	physical	
FE-13	CHF3		LOW	0	11700	264	16-18	470	physical	
FE-25	CHF2CF3		LOW	0	2800	32.6	10.9	580	physical	
Argonite	N2 Ar	50% 50%	LOW	0	0	0	33.6	600	physical	
Argotec	Ar	100%	LOW	0	0	0	38	500	physical	
Inergen	N2 Ar CO 2	52% 40% 8%	LOW	0	0	0	37.5	500	physical	
Carbon dioxide	CO 2	100%	HIGH	0			50	900	physical	
Water	H20		NIL	0	0	0			physical	
Chemical powders			LOW	0	0	0		1400-1800	chemical or physical	

* Pyrogen has been certified as low toxicity by the Academy of Science & Biophysics Institute, Moscow.

Parameter	MAG-02	MAG-1	MAG-2	MAG-3	MAG-4	MAG-5	MAG-11	MAG-12	MAG-13	MAG-14	MAG-15	MAG-16	MAG-17
Mass of generator, g	110	400	500	700	4,500	1,830	12,000	14,500	21,000	28,000	38,000	46,000	53,000
Mass of aerosol forming	20	60	100	200	1,000	500	1,500	2,200	3,500	6,000	6,500	8,400	11,000
composition, g													
Max protected volume, m ³													
@ 100g/m ³	0.2	0.6	1	2	10	5	12	17	27	46	50	65	85
Nozzle outlet	bi-	mono-	mono-	mono-	bi-	mono-	mono-	mono-	mono-	mono-	mono-	mono-	mono-
Length, mm	120	80	95	145	350	190	180	247	235	260	175	227	285
Diameter, mm	25	75	75	75	95	95	247	247	306	402	492	492	492
Discharge time, sec	<2.0	<3.0	<5.0	<7.0	<10.0	<8.0	<12.0	<12.0	<15.0	<15.0	<15.0	<15.0	<15.0

Available sizes

Health & Safety Statement

Primarily due to the high obscuration, PYROGEN is designed for use in normally unoccupied areas such as data rooms, machinery and engine spaces, control cabinets and storage areas. Inadvertent exposure to the aerosol should be avoided using normal precautions such as warning signals, pre-discharge alarm and post-discharge warning and venting. Accidental exposure to aerosol should be limited to 5 minutes.

As obscuration may impede the egress of personnel, hold off devices may be required for large areas or those with internal obstructions. Further details on the safe application, installation, operation and recommissioning of PYROGEN systems is given in the design manual and a manufacturers safety data sheet is available upon request.

Pyroshield (UK) Pyroshield's New Premises at Trafford Park Manchester.

Fire panels Part of Pyroshield's PyroSense Detection, Alarm & Activation Control Panel range, covering both Industrial & Marine Applications

Accessories A complete range of accessories are available to ficiltate complete installitions

Pyroshield Ltd. 11 Westbrook Trading Est., Westbrook Road, Trafford park, Manchester (UK) M17 1AY Telephone: +44 (0)161 877 0077 Fax: +44 (0)161 877 0078 E-mail: sales@pyroshield.co.uk www.pyroshield.co.uk